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Chapter 5. Constitutive Models 
This chapter describes the theoretical background behind the constitutive models that are 
available in FEBio. Most materials are derived from a hyperelastic strain-energy 
function. Please consult section 2.4 for more background information on this type of 
material.  

5.1. Linear Elasticity 
In the theory of linear elasticity the Cauchy stress tensor is a linear function of the small 
strain tensor : ε
 :σ  ε . (5.1) 
Here, is the fourth-order elasticity tensor that contains the material properties. In the 
most general case this tensor has 21 independent parameters. However, in the presence of 
material symmetry the number of independent parameters is greatly reduced. For 
example, in the case of isotropic linear elasticity only two independent parameters 
remain. In this case, the elasticity tensor is given by 

  ijkl ij kl ik jl il jk         . (5.2) 

The material coefficients  and  are known as the Lamé parameters. Using this 
equation, the stress-strain relationship can be written as 

  2
tr 2ij ij ij    ε  . (5.3) 

If the stress and strain are represented as Voigt vectors, the constitutive equation can be 
rewritten in matrix form as 
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. (5.4) 

 
The strain measures ij are the engineering strains and are given by 2ij ij  .  

 
The following table relates the Lame parameters to the more familiar Young’s modulus E 
and Poisson’s ratio  or to the bulk modulus K and shear modulus G. 
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It is of some interest to note that the theoretical range of the Poisson’s ratio for an 
isotropic material is 1 0.5   . Materials with Poisson’s ratio (close to) 0.5 are known 
as (nearly-) incompressible materials. For these materials, the bulk modulus approaches 
infinity. Most materials have a positive Poisson’s ratio, although there do exist some 
materials with a negative ratio. These materials are known as auxetic materials and they 
have the remarkable property that they expand under tension. 
 
The linear stress-strain relationship can also be derived from a strain-energy function 
such as in the case of hyperelastic materials. In this case the linear strain-energy is given 
by 

 
1

:
2

W  ε Cε . (5.5) 

The stress is then similarly derived from 
W




σ
ε

. In the case of isotropic elasticity, (5.5)

can be simplified: 

  21
tr :

2
W   ε ε ε . (5.6) 

The Cauchy stress is now given by 
  tr 2  σ ε 1 ε . (5.7) 
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5.2. Isotropic Elasticity 
The linear elastic material model as described in section 5.1 is only valid for small strains 
and small rotations. A first modification to this model to the range of nonlinear 
deformations is given by the St. Venant-Kirchhoff model [1], which in FEBio is referred 
to as isotropic elasticity. This model is objective for large strains and rotations. For the 
isotropic case it can be derived from the following hyperelastic strain-energy function: 

  21
tr :

2
W   E E E . (5.8) 

The second Piola-Kirchhoff stress can be derived from this: 

  tr 2
W  

  


S E 1
E

E . (5.9) 

Note that these equations are similar to the corresponding equations in the linear elastic 
case, only the small strain tensor is replaced by the Lagrangian elasticity tensor E. 
 

5.3. Neo-Hookean Hyperelasticity 
This is a compressible neo-Hookean material. It is derived from the following 
hyperelastic strain energy function [1]: 

    2

1 3 ln ln
2 2

W I J J
     . 

The parameters   and   are the Lamé parameters from linear elasticity. This model 
reduces to the isotropic linear elastic model for small strains and rotations. 
 
The neo-Hookean material is an extension of Hooke’s law for the case of large 
deformations. It is useable for plastics and rubber-like substances. A generalization of 
this model is the Mooney-Rivlin material, which is often used to describe the elastic 
response of biological tissue.  
 
In FEBio this constitutive model uses a standard displacement-based element formulation 
and a "coupled" strain energy, so care must be taken when modeling materials with 
nearly-incompressible material behavior to avoid element locking.   
 

5.4. Mooney-Rivlin Hyperelasticity 
This material model is a hyperelastic Mooney-Rivlin type with uncoupled deviatoric and 
volumetric behavior. The uncoupled strain energy W is given by: 

      2

1 1 2 2

1
3 3 l

2
W C I C I K J      n . 

and are the Mooney-Rivlin material coefficients, 1C 2C 1I and 2I are the invariants of the 

deviatoric part of the right Cauchy-Green deformation tensor, , where TC F F  
( 1 3)J F F , F is the deformation gradient and  de tJ F is the Jacobian of the 

deformation. When , this model reduces to an uncoupled version of the 2 0C 


